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Abslnd. In this paper we have analysed a simple mck propagation lattice model which 
incorporates Ihe bond-breaking probability P; o( ( 6 ;  - 6,)‘7, where 6 ,  is the ilh bond 
dongation and 6, i? the bond-breaking lhreshold below which lhe bond is unbroken. 
A twodimensional Uiangular lattice has tern employed wilh nearest-neighbour cenlral 
forces case3 d a uniform small dilation grain and of a Small shear in the horizontal 
direction wilh different apnents  7 have been considered. W have found that Ihe m c k  
pattems during Ihe breaking pmccns are Gam1 Umciures wilh lhe fraclal dimensions 
depending on the bond-breaking probability exponent 7 in a limited large lattice. 

Fracture phenomena are some of the most interesting processes in materials science. 
It is quite difficult to understand fracture processes on a fundamental level. Since it 
was first pointed out by Mandelbrot er a1 (1984) that cracks are fractals in nature, 
many new approaches including computer simulations and experiments have been 
devoted to the fractal features of the fracture of material quite extensively (Herrmann 
and Roux 1990); in general, computer simulations of fracture phenomena are divided 
into two, i.e. the deterministic growth of a fractal crack by percolation-type models 
and the probabilistic growth of a fractal crack using the DLA (Witten and Sander 
1981) as the guideline, which ranges from a random resistor network (Duxbury er a1 
1986, Beale and Srolovitz 1988, Herrmann 1989, Herrmann er a1 1989) to fracture 
surfaces (Peng and Tian 1990, Cao er a1 1991), to crack-growth models (Louis and 
Guinea 1987, Hinrichsen er d 1989, Meakin ef a1 1989). 

In the following we shall consider a simple lattice model which assumes the elastic 
medium to be represented by a network of nodes joined by Hookean springs (Duxbury 
er d 1986, Beale and Srolovitz 1988, Herrmann 1989, Herrmann el a1 1989). Suppose 
that the medium network is perfect, which means that no crack exists before the 
beginning of the simulation, and we wish to study how cracks are formed. 

The candidates for breaking bonds are first selected to be those bonds whose 
elongations 6, are larger than the breaking threshold 6,; then a bond-breaking 
probability is assigned to each candidate: 

Pi a (6, - 6,)” (1) 

where is an adjustable probability exponent. The bond-breaking condition 
probability proposed is different from those of Herrmann (1989) and Meakin er a1 
(1989). Here we have introduced 6c and the breaking probability is a function of the 
extra elongation of a bond compared with the threshold. If all unbroken bonds have 
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an elongation 6, B SC, then Pi a 6; (Meakin el a1 1989); if their elongation 6; < 6,, 
then the breaking process will be stopped. Moreover, the breaking candidates for 
bonds are not restricted to the surfaces of the 'crack' formed; instead, all bonds 
(except for broken bonds) are being examined in every step of the simulation. 

We adopt a two-dimensional triangular network of nodes as depicted in figure 1, 
mnnected by Hookean springs. The lattice consists of 150 rows and 150 nodes; 149 
nodes interchange in each row. At the start of each simulation, each of the nodes 
(except for those at the edge of the lattice) is connected to six nearest neighbours. 
' b o  cases are considered: isotropic dilation, ie. the components of displacement of 
any node are Vi, = axi, U i ,  = ayi, where Xi, U, are the coordinates of the ith 
node; shear along the horizontal direction by the coordinate transformation of nodes 
(Xi, y i )  - (Xi + aU,, x), ie. U;, = ax, U .  = 0, where a = In all 
simulations the bond force constant kij = k = U); k i j  = 0 if the bond is a broken 
bond. 

' Y  

Figure 1. A typical two-dimensional Uiangular lattice. 

For the network system the elastic energy E can be written as follows: 

E =  $Ckij [ (Ui-Uj) .r i j lZ 
i j  

where the sum index j runs over all the nearest nodes of the ith node, Vi and V j  
are the displacements of the ith and j th nodes, and rij i., the unit vector in the 
direction of the bond joining these nodes (Meakin d af 1989). 

Tabk 1. ResulU of two simulations. 

Exponent Stress field Iype D 
0.5 Dilation 1.48 f 0.03 
1.0 Dilation 1.49 f 0.02 
1.5 Dilation 1.54f 0.03 
2.0 Dilation 1.73 i 0.02 
0.5 Shear 1.26 i 0.03 
1.0 Shear 1.28 f 0.03 
1.5 Shcsr 1.31 f 0.05 
20 Shear 1.41 f 0.05 
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Figure 2 Crack distlibution wilh a Small dilation strain for wnous values of the 
probabilily exponenl q (the number of broken bonds is 13W in wely m e ) :  (0) q = 0.5; 
(b) = 1.0; ( E )  q = 1.5; ( d )  q = 2.0. 

At the beginning of each simulation, the bond threshold strain is typically given 
by 6, = 0.5 x unit length (we assume the lattice constant to be one unit). 
Such a threshold and magnitude of applied displacement ensure that the crack 
can always be formed at the beginning of the simulation, since we have chosen 
a > 6,. After isotropic dilation or shear of the lattice., select all those bonds whose 
elongations 6, are larger than 6,; then break one of them according to the probability 
given by P i / C i  Pi (the index i runs over all unbroken bonds). If a bond of the 
network is broken, this means that a crack is formed and the system k relaxed by 
solving the equations of elastic energy minimum to mechanical equilibrium using 
standard block overrelaxation methods (Jenning 1977). The relaxation procedure was 
an iteration process in the computational realization. When for the whole system 
IC,$) - U::-')/ 6 (Meakin et a1 1989, Peng and Tian 1990, Cao el a1 1991) 
for any node i and for 1 = I or U, the relaxation process was stopped, and we 
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F@m 3. Clack distribution with a Small shear Strain in the horizontal direction for 
various values of the probability exponent r) (the number of broken bonds is 1300 in 
evely case): (0 )  r) = 0.R (b) rj = 1.0; (c) rj = 1.5; (d) rj = 2.0. 

repeated the above sequence of random bond breaking and relaxation events (only 
for bi > ~ 5 ~ ) .  Throughout the simulation, the positions of the nodes at the edges 
of the network are k e d .  In all simulations, if the number of broken bonds reaches 
1300, the simulation is stopped. In order to overcome the effect of the edge of the 
system and to use the block overrelaxation method, we restrict our simulations to 
be localized in the centre region, which means that no broken bonds are allowed to 
occur at the edge of the network, Le. a breaking threshold larger than 6, was selected 
to exist for the boundary region bonds; so the distribution of cracks has a somewhat 
circular geometly. Here the free-boundary conditions were adopted in our simulation 
(Louis and Guinea 1987, Meakin er a1 1989, Peng and Tian 1990). Although in 
the horizontal direction a periodic boundary condition could have some influence 
on the simulation results quantitatively, it would not change the results qualitatively 
(Hinrichsen ef al 1989, Cao er a1 1991). The results obtained from typical simulations 
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carried out with isotropic dilation and four values of 0.5, 1.0, 1.5 and 2.0 for the 
probability exponent 11 are shown in figures 2(a), ab) ,  Z(c) and 2(d), respectively. It 
is evident from these figures that four +values lead to similar random structures, but 
the different q-values have influenced the crack distribution in a quantitative way. 
Figures 3(a), 3(b), 3(c) and 3(d)  show the results obtained from four values of 0.5, 
1.0, 1.5 and 2 0  of the exponent for the case of shear strain. 

0 .6  1.2 1.8 *., I). 0 -  0 . 0  L.2 1.0 2.1 

lWl0 I**) 
IW,O m91 

F@rr 4 Dependence of the gyration radius Rs on Flgure 5. Dependence of the gyration radius RE an 
the number n of bmken bonds for uniform dilation: Ihe number n of broken bonds for a mall shear 
NNe (a), 7 = 0.5; curve (b), r )  = 1.0; NNe (c), in the horizontal direclion: aINe (0). 7 )  = 0.5; 
r )  = 1.5; wive (d), r)  = 2.0. cuwe (b). r )  = 1.0; curve (c). = 1.5; a w e  (d). 

r )  = 2.0. 

All our estimates for the fractal dimensionality are based on the observation 
of a p e r - l a w  relationship between the radius R, of gyration of the crack (broken 
bonds) measured on the unstrained network ( Rs) and the number n of broken bonds 
(Hinrichsen ef d 1989, Meakin et a1 1989): 

R, D: np (W 
D = 1/P. (3) 

We have obtained the fractal dimensionalities from equation (3 )  according to the 
results of two simulations for each exponent as shown in table 1. 

From table 1 and figures 2 and 3, we have found that the exponents 0 have an 
effect on the crack distribution, that the fractal dimensions of cracks can be increased 
monotonically for two cases by increasing 11 and that the fractal dimensionalities of 
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cracks generated using dilation are larger than those obtained using the shear method, 
which differs from the results of Meakin et d (1989) where D increases continuously 
as q is decreased. In the case of dilation, the shapes of cracks are found to be more 
closed along the vertical direction with the parameter increasing; this crack tendency 
b clearer than that in the shear case. In all simulations the dependence of log,, R, 
versus log,,, n b a linear relation, as shown in figure 4 and figure 5. From the log-log 
plots, in the asymptotic region, ie. Ra -+ CO, the exponent D becomes independent 
of exponent q: D c= 1.5 for the dilation case and D c= 1.3 for the shear case. We 
do not know the real reason for this; it may be due to the change in the value of 
q which has only a local effect in a larger network, and a larger exponent q might 
produce more reasonable results. We are at present researching this aspect. 

In conclusion we have presented a simple dynamic model to study crack formation 
and distribution. We also characterized quantitatively crack patterns by means of the 
concept of fractal geometry. We found that the fractal dimensions D depend on 
the power q in a limited large network and, for a gyration radius Rg i 03, D had 
specific values for the dilation and shear cases, respectively; the crack tendency is 
clearer for uniform dilation than for shear. We admit that our model may be only a 
crude representation of real experimental systems. Nevertheless, our results may be 
useful in further studies of fracture and cracks. 
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